If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16x^2+76x-116=0
a = 16; b = 76; c = -116;
Δ = b2-4ac
Δ = 762-4·16·(-116)
Δ = 13200
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{13200}=\sqrt{400*33}=\sqrt{400}*\sqrt{33}=20\sqrt{33}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(76)-20\sqrt{33}}{2*16}=\frac{-76-20\sqrt{33}}{32} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(76)+20\sqrt{33}}{2*16}=\frac{-76+20\sqrt{33}}{32} $
| x=-25+30 | | 12m+11=-9m+25 | | a+1/a+3+a+5/6=2 | | c=(3.14)20 | | x^2+x^2=392 | | c=(3.14)5 | | c=(3.14)14 | | 3x=4=6x-10 | | 1/4x18=3/4(2x+5) | | c=(3.14)7 | | c=3.147 | | 80÷2x=600 | | c=(3.14)12 | | 59=−5x−4−4x | | c=(3.14)36 | | 2x+-6=-2x+2 | | 2x+2.5=23 | | 4/3x-(1/2x+3.5)=10 | | 2x+80=770 | | c=(3.14)42 | | c=(3.14)22 | | 6x+1+10x-43=180 | | 5x=3/2x+-1.2 | | 3(0.5×-4)=3/2x-1.2 | | 20x-14=36 | | c=3.1436 | | −d=5 | | x/−6=−8−(−12) | | 3x2-8x=-5 | | x−6=−8−(−12) | | -19x=-5 | | 2x+2(1/2)=3 |